New study identifies genes and cell types that potentially contribute to primary open-angle glaucoma formation

News
Article

Findings from Mass Eye and Ear’s collaborative study provides new insights regarding gene expression and post-transcriptional gene regulation.

Woman in lab looking into test tub Image Credit: AdobeStock/ViacheslavYakobchuk

Image Credit: AdobeStock/ViacheslavYakobchuk

A new study has uncovered genes, biological processes, and cell types that may affect the pathogenesis of primary open-angle glaucoma (POAG). The study, published in Nature Communications by Mass Eye and Ear researchers, came to these conclusions by combining “genetic discoveries from a large cross-ancestry genome-wide association study meta-analysis of POAG and a large meta-analysis of intraocular pressure (IOP) with genetic regulation studies and single cell expression measurements in glaucoma-relevant eye tissues,” according to a news brief.

Work for the study was completed in collaboration with the International Glaucoma Genetics Consortium, along with the laboratories of Josh Sanes, Harvard University; Rui Chen, Baylor College of Medicine; Veronique Vitart, The University of Edinburgh; Skanda Rajasundaram, Imperial College London; and Anand Swaroop, NEI. The study on the meta-analysis of POAG was led by Janey Wiggs, MD, PhD.1

“Our work has generated new insights into POAG mechanisms, which could inform the development of novel therapies targeting IOP reduction and neuroprotection,” said Ayellet Segré, PhD, in the release. “For example, this research suggests that targeting neuronal support cells, in addition to retinal ganglion cells, may be important to consider in the design of new drug and cell therapies. Through our ongoing work aimed at detecting genetic regulation of gene expression in glaucoma-relevant eye tissues, we hope in the future to provide a more complete understanding of POAG risk and IOP variation.”

Hundreds of genes and regulatory effects were found to underlay over 100 loci associated with either, or both, POAG and IOP, by the group of researchers, led by Segré. These loci contribute to glaucoma risk by means of altering gene expression levels.1 “These genes are enriched in biological pathways implicated in disease mechanisms, including elastic fiber formation and extracellular matrix organization, vascular development, and neuronal related processes,” stated the brief.

Researchers were also able to identify less well-established cell types where gene dysregulation could affect optic nerve degeneration. The researchers compiled data from fibroblasts in conventional and unconventional outflow pathways, as well as the surrounding region of the optic nerve head, astrocytes in the retina and optic nerve head and oligodendrocytes and vascular cells in the optic nerve head to come to these conclusions. As a whole, the single-nucleus gene expression data was sourced from aqueous humor outflow pathways, retina, and the optic nerve head and surrounding posterior tissues.1

The brief stated that identifying these pathways can provide new insights regarding gene expression and post-transcriptional gene regulation. This could lead to drug design improvements for glaucoma.

Reference:
  1. Researchers identify genes and cell types that may have causal role in primary open-angle glaucoma. Mass Eye and Ear. Research Brief. Published February 15, 2024. Accessed February 19, 2024. https://www.masseyeandear.org/news/articles/2024/researchers-identify-genes-cell-types-primary-open-angle-glaucoma-formation
Recent Videos
Alongside Rachelle Lin, OD, MS, FAAO; Nguyễn, MD, MSc, detailed what treatments are currently available for retinal vascular diseases, including neovascular age-related macular degeneration and diabetic retinopathy.
Nora Lee Cothran, OD, FAAO, details a real-world study that found IOP-lowering benefits when switching patients with glaucoma to latanoprostene bunod treatment.
Mile Brujic, OD, FAAO; Nate Lighthizer, OD, FAAO; Brianna Rhue, OD, FAAO, FSLS; Ben Casella, OD; and Ben Gaddie, OD, FAAO shared their insights from the conference.
Agatha Sleboda, OD; Arti Shah, OD, FAAO; and Kent J. Nozacki, OD provide the best tips that they give to their patients during natural disasters events in light of the recent Greater Los Angeles wildfires.
Optometrists local to the Los Angeles area overview their efforts to continue providing support to patients affected by January's wildfires.
Brianna Rhue, OD, FAAO, FSLS, reviewed key takeaways from The Future of Myopia Management: Perspectives from Leading Experts talk from SECO 2025.
Dr. Nate Lighthizer shares key takeaways from the SECO Showcase on anterior segment technology and full laser certification course offered at SECO.
Dr. Julie Rodman discusses retina, imaging, and posterior segment in SECO presentations
Shan Lin, MD, and John Berdahl, MD, share their perspectives as ophthalmologists regarding the importance of comanagement.
Robert L. Stamper, MD, overviews his optometric track talk titled Objective Perimetry - Can you see it? at this year's Glaucoma 360 meeting.
© 2025 MJH Life Sciences

All rights reserved.