Researchers use viscous seaweed to treat retinal detachment

News
Article

The effort led to the creation of an artificial vitreous body for treating retinal detachment. This solution is based on a natural carbohydrate derived from algae.

Seaweed floating in water Image Credit: AdobeStock/divedog

Image Credit: AdobeStock/divedog

Researchers at Pohang University of Science and Technology (POSTECH) have published results of a study exploring the use of alginate for the treatment of retinal detachment.

The study, a collaborative effort that includes researchers from the Department of Chemical Engineering, School of Convergence Science and Technology, and the Department of Chemical Engineering at POSTECH and the Dong-A University Hospital's Department of Ophthalmology, was published in Biomaterials.1

The researchers’ work has led to the creation of an artificial vitreous body for treating retinal detachment. This solution is based on a natural carbohydrate derived from algae.

According to a POSTECH news release, the vitreous body is a gel-like substance that occupies the space between the lens and retina, contributing to the eye's structural integrity. Retinal detachment occurs when the retina separates from the inner wall of the eye and moves into the vitreous cavity, leading to detachment and potentially resulting in blindness in severe cases. While a common approach involves removing the vitreous body and substituting it with medical intraocular fillers like expandable gas or silicone oil, these fillers have been associated with various side effects.2

The researchers addressed these issues by using a modified form of alginate, a natural carbohydrate sourced from algae. Alginate, also known as alginic acid, is widely utilized in various industries, including food and medicine, for its ability to create viscous products. In this research, the team crafted a medical composite hydrogel based on alginate, offering a potential alternative for vitreous replacement.

The hydrogel, which has high biocompatibility and optical properties akin to authentic vitreous body, enables patients to preserve their vision post-surgery. Its distinctive viscoelasticity effectively regulates fluid dynamics within the eye, contributing to retinal stabilization and the elimination of air bubbles.1

To validate the hydrogel's stability and effectiveness, researchers conducted experiments using animal models, specifically rabbit eyes, which closely resemble human eyes in structure, size, and physiological response. Implanting the hydrogel into rabbit eyes demonstrated its success in preventing the recurrence of retinal detachment, maintaining stability, and functioning well over an extended period without any adverse effects.2

POSTECH’s Hyung Joon Cha, PhD, who led the study, noted in the news release that there is a correlation between retinal detachment and severe myopia and the prevalence of retinal detachment is increasing, particularly in young people.

“The incidence of retinal detachment cases in Korea rose by 50% in 2022 compared to 2017,” he said. “Our team will enhance and progress the technology to make the hydrogel suitable for practical use in real-world eye care through ongoing research.”

“The worldwide market for intraocular fillers is expanding at a rate of 3% per year,” said Woo Jin Jeong, MD, PhD, from the Dong-A University Hospital. “We anticipate that the hydrogel we've created will prove beneficial in upcoming vitreoretinal surgeries."

The research was sponsored by the Korea Medical Device Development Fund and the Mid-Career Research Program of the National Research Foundation of Korea.2

References:
  1. Geunho Choi, Seoung Hyuan An, Joe-Won Choi, Mee Sook Rho, Woo Chan Park, Woo Jin Jeonh, Hyung Joon Cha. Injectable alginate-based in situ self-healable transparent hydrogel as a vitreous substitute with a tamponading function, Biomaterials, Volume 305, Published March 2024, 122459, ISSN 0142-9612. DOI: https://doi.org/10.1016/j.biomaterials.2023.122459
  2. Treatment for blindness-causing retinal detachment using viscous seaweed. EurekAlert! Accessed March 27, 2024. https://www.eurekalert.org/news-releases/1039024
Recent Videos
Abby Gillogly Harsch, OD, FAAO, FSLS, shares a specific complex case of scleral lens fitting that she presented on at this year's GSLS.
Sherrol Reynolds, OD, FAAO, values the ophthalmic-optometric collaboration on display at the summit, running from February 14-17, 2025 in San Juan, Puerto Rico.
Katie Rachon, OD, FAAO, Dipl ABO, shares her excitement for the upcoming conference and what it means for an optometrist's toolbox.
From contact lens dropout to addressing diabetic retinopathy in rural communities, optometrists choose an area of eye care research that they would expand, given the appropriate resources.
From new treatments on the horizon for macular degeneration to strengthening comanagement ties, optometrists cite a lot to be excited about in the coming year.
Practice owners testify to the importance of trying new things, not being afraid to fail, and utilizing community as a resource when starting up a new practice.
Optometrists reflect on their residency experiences and provide advice to current residents.
In 2 weeks, the study participant's dry eye symptoms improved from 76 to 43 on a 0-100 rating scale, according to Marc-Matthias Schulze, PhD, Dipl Ing.
Eye care practitioners reported moderate to high satisfaction with lifitegrast's ability to improve signs of dry eye, according to Melissa Barnett, OD, FAAO, FSLS.
Neda Gioia, OD, CNS, FOWNS, details the positive feedback gained so far from other optometrists that have been prescribing the NutriTears supplement to their dry eye patients.
© 2025 MJH Life Sciences

All rights reserved.